Use of molecular imprinted polymer for isolation of secondary metabolites in plants for drug raw material independence
##plugins.themes.academic_pro.article.main##
Abstract
Indonesia, with its rich biodiversity, has numerous plant species with significant therapeutic potential. Secondary metabolites in plants play a vital role in pharmaceuticals, agriculture, and the food industry. However, traditional methods for isolating these compounds are often non-selective, time-consuming, and environmentally unfriendly. Molecularly Imprinted Polymer (MIP) is an emerging method for isolating secondary metabolites due to its selectivity and efficiency. MIP has been successfully applied in the identification and separation of plant-derived compounds, including secondary metabolites, chemical residues, and pesticides. This study explores the use of MIP for isolating secondary metabolites in plants and aims to contribute to developing strategies for obtaining targeted metabolites. The findings also highlight future research opportunities for MIP in industrial applications to support the independence of medicinal raw materials in Indonesia.
##plugins.themes.academic_pro.article.details##
References
Adumitrăchioaie, A., Tertiș, M., Cernat, A., Săndulescu, R., & Cristea, C. (2018). Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. International Journal of Electrochemical Science, 13(3), 2556–2576.
Akgönüllü, S., Kılıç, S., Esen, C., & Denizli, A. (2023). Molecularly imprinted polymer-based sensors for protein detection. Polymers, 15(3), 629.
Alipour, S., Azar, P. A., Husain, S. W., & Rajabi, H. R. (2021). Synthesis, characterization and application of spherical and uniform molecularly imprinted polymeric nanobeads as efficient sorbent for selective extraction of rosmarinic acid from plant matrix. Journal of Materials Research and Technology, 12, 2298–2306.
Arabi, M., Ghaedi, M., & Ostovan, A. (2017). Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. Journal of Chromatography B, 1048, 102–110.
Ariani, M. D., Zuhrotun, A., Manesiotis, P., & Hasanah, A. N. (2022). Magnetic molecularly imprinted polymers: an update on their use in the separation of active compounds from natural products. Polymers, 14(7), 1389.
Ariani, M. D., Zuhrotun, A., Manesiotis, P., & Hasanah, A. N. (2024). Synthesis of molecularly imprinted polymer with a methacrylate derivative monomer for the isolation of ethyl p-methoxycinnamate as an active compound from Kaempferia galanga L. extracts. RSC Advances, 14(19), 13521–13534.
Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436.
Badri, S., Basu, V. R., Chandra, K., & Anasuya, D. (2019). A review on pharmacological activities of alkaloids. World J Curr Med Pharm Res, 1(6), 230–234.
Baker, Z. K., & Sardari, S. (2021). Molecularly imprinted polymer (MIP) applications in natural product studies based on medicinal plant and secondary metabolite analysis. Iranian Biomedical Journal, 25(2), 68.
BelBruno, J. J. (2018). Molecularly imprinted polymers. Chemical Reviews, 119(1), 94–119.
Cahyaningsih, R., Phillips, J., Brehm, J. M., Gaisberger, H., & Maxted, N. (2021). Climate change impact on medicinal plants in Indonesia. Global Ecology and Conservation, 30, e01752.
Chen, F.-F., Xie, X.-Y., & Shi, Y.-P. (2012). Magnetic molecularly imprinted polymer for the detection of rhaponticin in Chinese patent medicines. Journal of Chromatography A, 1252, 8–14.
Chen, L., Wang, X., Lu, W., Wu, X., & Li, J. (2016). Molecular imprinting: perspectives and applications. Chemical Society Reviews, 45(8), 2137–2211.
Cheng, Y., Nie, J., Liu, H., Kuang, L., & Xu, G. (2020). Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. Journal of Chromatography A, 1630, 461531.
Christianson, D. W. (2017). Structural and chemical biology of terpenoid cyclases. Chemical Reviews, 117(17), 11570–11648.
Cuinica, L. G., & Chissico, R. B. (2018). Anti-inflammatory properties of extract and quercetin from Urtica dioica L. Adv Anal Pharm Chem: AAPC-104. DOI, 10.
De Silva, G. O., Abeysundara, A. T., & Aponso, M. M. W. (2017). Extraction methods, qualitative and quantitative techniques for screening of phytochemicals from plants. American Journal of Essential Oils and Natural Products, 5(2), 29–32.
Di, R., Zhang, Y., Wu, Z., Liu, W., & Yang, C. (2020). Foam fractionation for the recovery of proanthocyanidin from Camellia seed shells using molecular imprinting chitosan nanoparticles as collector. Journal of Molecular Liquids, 302, 112523.
Ersoy, Ş. K., Tütem, E., Başkan, K. S., Apak, R., & Nergiz, C. (2016). Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract. Journal of Chromatography B, 1017, 89–100.
Foroughirad, S., Haddadi-Asl, V., Khosravi, A., & Salami-Kalajahi, M. (2021). Effect of porogenic solvent in synthesis of mesoporous and microporous molecularly imprinted polymer based on magnetic halloysite nanotubes. Materials Today Communications, 26, 101780.
Gu, X., Xu, R., Yuan, G., Lu, H., Gu, B., & Xie, H. (2010). Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Analytica Chimica Acta, 675(1), 64–70.
Guo, B., Tong, Y., Zhang, B., & Tian, M. (2021). Double affinity based molecularly imprinted polymers for selective extraction of luteolin: A combination of synergistic metal chelating and boronate affinity. Microchemical Journal, 160, 105670.
Hasanah, A. N., Safitri, N., Zulfa, A., Neli, N., & Rahayu, D. (2021). Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules, 26(18), 5612.
He, S., Zhang, L., Bai, S., Yang, H., Cui, Z., Zhang, X., & Li, Y. (2021). Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. European Polymer Journal, 143, 110179.
Hermawan, E., Hadiyati, N. A., Adiarso, A., Setiyadi, E. D., Zunuraen, S., Hidayat, D., Wahyudi, A., & Ru’yi, H. A. (2023). Challenges and Policy Supports in Indonesian Pharmaceutical Raw Materials Industry. Indonesian Journal of Health Administration, 11(2), 196–211.
Kamil Hussain, M., Saquib, M., & Faheem Khan, M. (2019). Techniques for extraction, isolation, and standardization of bio-active compounds from medicinal plants. Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices, 179–200.
Kang, X., Deng, L., Quan, T., Gao, M., Zhang, K., Xia, Z., & Gao, D. (2021). Selective extraction of quinolizidine alkaloids from Sophora flavescens Aiton root using tailor-made deep eutectic solvents and magnetic molecularly imprinted polymers. Separation and Purification Technology, 261, 118282.
Li, W., Liang, A., Lu, Z., & Xie, Y. (2023). Application of Molecular Imprinting Technique in Separation and Detection of Natural Products. Engineering Proceedings, 49(1), 1.
Liu, Y., Qiu, X., Zhang, M., Lin, Y., Lan, H., Li, X., Wu, Q., & He, J. (2024). Boronate affinity-based surface molecularly imprinted polymer microspheres using polyethyleneimine/dopamine coating for efficient selective recognition and separation of Ginsenoside Rb1. Reactive and Functional Polymers, 194, 105780.
Ma, X., Lin, H., Yong, Y., Ju, X., Li, Y., Liu, X., Yu, Z., Wujin, C., She, Y., & Zhang, J. (2022). Molecularly imprinted polymer-specific solid-phase extraction for the determination of 4-hydroxy-2 (3H) benzoxazolone isolated from Acanthus ilicifolius Linnaeus using high-performance liquid chromatography-tandem mass spectrometry. Frontiers in Nutrition, 9, 950044.
Ma, X., Zhang, X., Lin, H., Abd El‐Aty, A. M., Rabah, T., Liu, X., Yu, Z., Yong, Y., Ju, X., & She, Y. (2020). Magnetic molecularly imprinted specific solid‐phase extraction for determination of dihydroquercetin from Larix griffithiana using HPLC. Journal of Separation Science, 43(12), 2301–2310.
Mabrouk, M., Hammad, S. F., Abdella, A. A., & Mansour, F. R. (2023). Tips and tricks for successful preparation of molecularly imprinted polymers for analytical applications: A critical review. Microchemical Journal, 193, 109152.
Malik, M. I., Shaikh, H., Mustafa, G., & Bhanger, M. I. (2019). Recent applications of molecularly imprinted polymers in analytical chemistry. Separation & Purification Reviews, 48(3), 179–219.
Murdaya, N., Triadenda, A. L., Rahayu, D., & Hasanah, A. N. (2022). A review: using multiple templates for molecular imprinted polymer: is it good? Polymers, 14(20), 4441.
Önal Acet, B., İnanan, T., Salieva, K., Borkoev, B., Odabaşı, M., & Acet, Ö. (2024). Molecular imprinted polymers: important advances in biochemistry, biomedical and biotechnology. Polymer Bulletin, 81(12), 10439–10459.
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47.
Pardeshi, S., Dhodapkar, R., & Kumar, A. (2014). Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chemistry, 146, 385–393.
Pratama, K. F., Manik, M. E. R., Rahayu, D., & Hasanah, A. N. (2020). Effect of the molecularly imprinted polymer component ratio on analytical performance. Chemical and Pharmaceutical Bulletin, 68(11), 1013–1024.
Rasul, M. G. (2018). Extraction, isolation and characterization of natural products from medicinal plants. Int. J. Basic Sci. Appl. Comput, 2(6), 1–6.
Saad, E. M., Madbouly, A., Ayoub, N., & El Nashar, R. M. (2015). Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Analytica Chimica Acta, 877, 80–89.
Sari, D. K., Jeelani, G., Ilmi, H., Tumewu, L., Wahyuni, R., Widyawaruyanti, A., Nozaki, T., & Hafid, A. F. (2024). Therapeutic potential of Indonesian plant extracts in combating malaria and protozoan neglected tropical disease. BMC Complementary Medicine and Therapies, 24(1), 416.
Soquetta, M. B., Terra, L. de M., & Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA-Journal of Food, 16(1), 400–412.
Sun, Y., Zhang, Y., Ju, Z., Niu, L., Gong, Z., & Xu, Z. (2019). Molecularly imprinted polymers fabricated by Pickering emulsion polymerization for the selective adsorption and separation of quercetin from Spina Gleditsiae. New Journal of Chemistry, 43(37), 14747–14755.
Tabaraki, R., & Sadeghinejad, N. (2020). Preparation and application of magnetic molecularly imprinted polymers for rutin determination in green tea. Chemical Papers, 74, 1937–1944.
Tan, L., Zhou, L.-D., Jiang, Z.-F., Ma, R.-R., He, J.-Y., Xia, Z.-N., Zhang, Q.-H., Wang, C.-Z., & Yuan, C.-S. (2021). Selective separation and inexpensive purification of paclitaxel based on molecularly imprinted polymers modified with ternary deep eutectic solvents. Journal of Pharmaceutical and Biomedical Analysis, 192, 113661.
Tian, C., Wu, Z., He, M., Chen, B., & Hu, B. (2022). Amino functionalized magnetic covalent organic framework for magnetic solid‐phase extraction of sulfonylurea herbicides in environmental samples from tobacco land. Journal of Separation Science, 45(10), 1746–1756.
Torres-Ortiz, D., García-Alcocer, G., Berumen-Segura, L. C., & Estevez, M. (2024). Green extraction of secondary metabolites from plants: Obstacles, current status, and trends. Sustainable Chemistry for the Environment, 100157.
Wan, Y., Wang, M., Fu, Q., Wang, L., Wang, D., Zhang, K., Xia, Z., & Gao, D. (2018). Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. Journal of Chromatography B, 1097, 1–9.
Włoch, M., & Datta, J. (2019). Synthesis and polymerisation techniques of molecularly imprinted polymers. In Comprehensive analytical chemistry (Vol. 86, pp. 17–40). Elsevier.
Xiao, Y., Xiao, R., Tang, J., Zhu, Q., Li, X., Xiong, Y., & Wu, X. (2017). Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta, 162, 415–422.
Xie, X., Wei, F., Chen, L., & Wang, S. (2015). Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts. Journal of Separation Science, 38(6), 1046–1052.
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1–26.
Zhang, W., Wei, B., Li, S., Wang, Y., & Wang, S. (2017). Preparation and Chromatographic Application of β-cyclodextrin molecularly imprinted microspheres for paeoniflorin. Polymers, 9(6), 214.
Zheng, W., Zhang, S., & Deng, J. (2024). Analysis of the adsorption mechanism of phosphoric acid-modified bamboo charcoal for chlorogenic acid based on density functional theory. Chemical and Biological Technologies in Agriculture, 11(1), 13.
Zhou, T., Shen, X., Chaudhary, S., & Ye, L. (2014). Molecularly imprinted polymer beads prepared by pickering emulsion polymerization for steroid recognition. Journal of Applied Polymer Science, 131(1).
Zhou, Y., Jiang, Z., Lu, H., Xu, Z., Tong, R., Shi, J., & Jia, G. (2019). Recent advances of natural polyphenols activators for Keap1‐Nrf2 signaling pathway. Chemistry & Biodiversity, 16(11), e1900400.
Zuo, J., Ma, P., Li, Z., Zhang, Y., Xiao, D., Wu, H., & Dong, A. (2023). Application of molecularly imprinted polymers in plant natural products: Current progress and future perspectives. Macromolecular Materials and Engineering, 308(3), 2200499.