Phytochemical study and pharmacological activity of the schoutenia ovata korth. stems from the hills of Tulungagung
##plugins.themes.academic_pro.article.main##
Abstract
Schoutenia ovata Korth. has a shrub or tree habit and is able to grow up to a height of 25 meters. Humans often use this plant as medicine, one of which is found on the stems. However, no one has researched the good phytochemical content of this plant stem. This is evident in the PubChem data, which indicates that there is no phytochemical profile available for this plant. Therefore, this study aims to determine the phytochemical content and pharmacological activity of Schoutenia ovata Korth. stems. The sample in this study is a stem taken from the hills of Tulungagung, East Java, Indonesia. The sample is then dried and made into a coarse powder. The content of chemical elements is analyzed using an X-ray fluorescence spectrometer. Furthermore, phytochemical tests are conducted to identify the presence of flavonoids, alkaloids, steroids, tannins, saponins, and phenols using the LC-MS/MS QTOF method. Pharmacological activities are investigated through a literature study. The Schoutenia ovata Korth. stems contain chemical elements O (48.6%), C (47%), K (2.9%), Ca (0.6%), Al (0.2%), Si (0.2%), P (0.2%), Cl (0.2%), Mg (0.1%). The results of phytochemical tests show that the stem contains alkaloids, flavonoids, and steroids. Based on the content of phytochemical compounds, the stems of Schoutenia ovata Korth. exhibits pharmacological activities, including antidiabetic, analgesic, anti-inflammatory, antioxidant, immunomodulatory, anticancer, and wound-healing properties.
##plugins.themes.academic_pro.article.details##
References
Alrashidi, A. A., Alhaithloul, H. A. S., Soliman, M. H., Attia, M. S., Elsayed, S. M., Ali, M. M., Sadek, A. M., & Fakhr, M. A. (2022). Role of calcium and magnesium on dramatic physiological and anatomical responses in tomato plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 1–25. https://doi.org/10.15835/nbha50112614
Alu’datt, M. H., Rababah, T., Al-u’datt, D. G. F., Gammoh, S., Alkandari, S., Allafi, A., Alrosan, M., Kubow, S., & Al-Rashdan, H. K. (2024). Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): biochemical and biological prospects toward health implications. Journal of Food Science, 89(4), 1865–1893. https://doi.org/10.1111/1750-3841.16981
Bai, H., Li, W., Koike, K., Satou, T., Chen, Y., & Nikaido, T. (2005). Cynanosides A-J, ten novel pregnane glycosides from Cynanchum atratum. Tetrahedron, 61(24), 5797–5811. https://doi.org/10.1016/j.tet.2005.04.015
Bouyahya, A., Taha, D., Benali, T., Zengin, G., El Omari, N., El Hachlafi, N., Khalid, A., Abdalla, A. N., Ardianto, C., Tan, C. S., Ming, L. C., & Sahib, N. (2023). Natural sources, biological effects, and pharmacological properties of cynaroside. Biomedicine and Pharmacotherapy, 161(November 2022), 114337. https://doi.org/10.1016/j.biopha.2023.114337
Dalli, M., Bekkouch, O., Azizi, S. E., Azghar, A., Gseyra, N., & Kim, B. (2022). Nigella sativa l. phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules, 12(1). https://doi.org/10.3390/biom12010020
El-Hawary, S. S., Moawad, A. S., Bahr, H. S., Abdelmohsen, U. R., & Mohammed, R. (2020). Natural product diversity from the endophytic fungi of the genusAspergillus. RSC Advances, 10(37), 22058–22079. https://doi.org/10.1039/d0ra04290k
Feng, X., Zhang, X., Chen, Y., Li, L., Sun, Q., & Zhang, L. (2020). Identification of bilobetin metabolites, in vivo and in vitro, based on an efficient ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry strategy. Journal of Separation Science, 43(17), 3408–3420. https://doi.org/10.1002/jssc.202000313
Gholamnezhad, Z., Shakeri, F., Saadat, S., Ghorani, V., & Boskabady, M. H. (2022). Experimental and clinical studies on the effects of Nigella Sativa and its constituents on allergic and immunological disorders. 9(3), 121–146. https://doi.org/10.2174/9789815040616122050006
Hwang, J. R., Cartron, A. M., & Khachemoune, A. (2021). A review of Nigella sativa plant-based therapy in dermatology. International Journal of Dermatology, 60(12), e493–e499. https://doi.org/10.1111/ijd.15615
Ki Lee, H., Bae, S., Lee, J., Sun Cha, H., Jin Nam, M., Lee, J., Park, K., Yang, Y. H., Yun Jang, K., Liu, K. H., & Park, S. H. (2023). Bilobetin induces apoptosis in human hepatocellular carcinoma cells via ROS level elevation and inhibition of CYP2J2. Arabian Journal of Chemistry, 16(9), 105094. https://doi.org/10.1016/j.arabjc.2023.105094
Kustiati, U., Wihadmadyatami, H., & Kusindarta, D. L. (2022). Dataset of phytochemical and secondary metabolite profiling of holy basil leaf (Ocimum sanctum Linn) ethanolic extract using spectrophotometry, thin layer chromatography, fourier transform infrared spectroscopy, and nuclear magnetic resonance. Data in Brief, 40. https://doi.org/10.1016/j.dib.2021.107774
Liang, W. F., Gong, Y. X., Li, H. F., Sun, F. L., Li, W. L., Chen, D. Q., Xie, D. P., Ren, C. X., Guo, X. Y., Wang, Z. Y., Kwon, T., & Sun, H. N. (2021). Curcumin activates ROS signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells. In Vivo, 35(1), 249–257. https://doi.org/10.21873/INVIVO.12253
Mohsin, N. ul A., Irfan, M., Hassan, S. ul, & Saleem, U. (2020). Current strategies in development of new Chromone derivatives with diversified pharmacological activities: a review. Pharmaceutical Chemistry Journal, 54(3), 241–257. https://doi.org/10.1007/s11094-020-02187-x
Mollazadeh, H., & Hosseinzadeh, H. (2014). The protective effect of Nigella sativa against liver injury: A review. Iranian Journal of Basic Medical Sciences, 17(12), 958–966.
Palupi, K. D., Praptiwi, & Agusta, A. (2021). Skrining aktivitas antiabkteri dan antioksidan ekstrak tumbuhan Schoutenia ovata Korth. (Walikukun) (A. S. Panggabean, D. Tarigan, & S. Koesnarpadi (eds.); pp. 58–62). Prosiding Seminar Nasional HMPS Kimia Universitas Mulawarman. https://jurnal.kimia.fmipa.unmul.ac.id/index.php/prosiding/article/view/1094
Parfati, N., & Windono, T. (2016). Sirih merah (Piper crocatum Ruiz & Pav.) kajian pustaka aspek botani, kandungan kimia, dan aktivitas farmakologi. Media Pharmaceutica Indonesiana, 1(2), 106–115. https://repository.ubaya.ac.id/32881/
Rajkumar, G., Panambara, P. A. H. R., & Sanmugarajah, V. (2022). Comparative analysis of qualitative and quantitative phytochemical evaluation of selected leaves of medicinal plants in Jaffna, Sri Lanka. Borneo Journal of Pharmacy, 5(2), 93–103. https://doi.org/10.33084/bjop.v5i2.3091
Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: ecological and. In Plants (Vol. 10, Issue 419).
Setiyorini, A., & Setyowati, E. (2022). Morfologi dan etnobotani tanaman walikukun (Schoutenia ovata Korth.) studi fenomena di perbukitan walikukun (1st ed.). Akademia Pustaka. http://repo.uinsatu.ac.id/33513/1/Morfologi dan Etnobotani Tumbuhan Walikukun.pdf
Shafiq, H., Ahmad, A., Masud, T., & Kaleem, M. (2014). Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iranian Journal of Basic Medical Sciences, 17(12), 967–980.
Shakeri, F., Khazaei, M., & Boskabady, M. H. (2018). Cardiovascular effects of Nigella sativa L. and its constituents. Indian Journal of Pharmaceutical Sciences, 80(6), 971–983. https://doi.org/10.4172/pharmaceutical-sciences.1000447
Sohn, S. I., Priya, A., Balasubramaniam, B., Muthuramalingam, P., Sivasankar, C., Selvaraj, A., Valliammai, A., Jothi, R., & Pandian, S. (2021). Biomedical applications and bioavailability of curcumin—an updated overview. Pharmaceutics, 13(12), 1–33. https://doi.org/10.3390/pharmaceutics13122102
Taleb, J., Bkhairia, I., Ncibi, S., Smida, A., Mabrouki, L., Nasri, M., & Zourgui, L. (2022). Therapeutic potential of Opuntia ficus indica extract against cadmium-induced osteoporosis and DNA bone damage in male rRats. Journal of Tropical Pharmacy and Chemistry, 6(1), 1–14. https://doi.org/10.25026/jtpc.v6i1.256
Wang, Q., Wu, Z. li, Yuan, X., Dong, H. yuan, Xu, X., Xin, H., Wang, Y. hang, Zhang, J. bing, Chen, L., Li, H. liang, Zhang, X. mei, & Zhang, W. dong. (2019). Bilobetin induces kidney injury by influencing cGMP-mediated AQP-2 trafficking and podocyte cell cycle arrest. Phytomedicine, 64(August), 153073. https://doi.org/10.1016/j.phymed.2019.153073
Wang, Y., Zhao, Y., Liu, X., Li, J., Zhang, J., & Liu, D. (2022). Chemical constituents and pharmacological activities of medicinal plants from Rosa genus. Chinese Herbal Medicines, 14(2), 187–209. https://doi.org/10.1016/j.chmed.2022.01.005
Zhang, C. F., Liu, X. F., Zhao, Y. Y., & Zhang, M. (2016). Evaluation of anti-inflammatory and immunosuppressive properties of Cynanchum ascyrifolium Matsum. and its active secondary metabolites. Records of Natural Products, 10(4), 526–529.