The effect of ampk signaling in type 2 diabetes a literature review

##plugins.themes.academic_pro.article.main##

Putri Rahmadhanita
Mgs Irsan Saleh
Eddy Mart Salim

Abstract

Diabetes is a metabolic syndrome characterized by inadequate blood glucose control and associated with reduced quality of life and various complications that significantly shorten life expectancy. Type 2 diabetes is caused by insulin resistance, in which insulin is well secreted but cells do not respond properly. Increasing evidence reveals the role of molecular pathways in the development of DM and its associated complications. The references of this literature review were collected from PubMed. Studies have attempted to identify signaling networks and therapeutic targeting in DM therapy. As the disease progresses, DM is followed by evidence of the existence of a molecular pathway in the form of AMPK signaling which can coordinate cell metabolism according to specific energy needs. AMPK is a master regulator of metabolism that functions to restore energy balance during metabolic stress at both a cellular and physiological level. Inducing AMPK signaling can provide blood glucose in DM which is important to improve hyperglycemia. The purpose of this literature review was to determine the effect of AMPK signaling on type 2 DM and gives an insight about agents that can enhances AMPK signaling to prevent the further impact of DM.

##plugins.themes.academic_pro.article.details##

How to Cite
Rahmadhanita, P., Saleh, M. I. and Salim, E. M. (2023) “The effect of ampk signaling in type 2 diabetes a literature review ”, Science Midwifery, 11(2), pp. 391-397. doi: 10.35335/midwifery.v11i2.1286.

References

Ashrafizadeh, M., Yaribeygi, H., Atkin, S. L., & Sahebkar, A. (2019). Effects of newly introduced antidiabetic drugs on autophagy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(4), 2445–2449. https://doi.org/10.1016/j.dsx.2019.06.028
Bai, M., Liu, Y., Zhou, F., Zhang, Y., Zhu, Q., Zhang, L., Zhang, Q., Wang, S., Zhu, K., Wang, X., & Zhou, L. (2018). Berberine inhibits glucose oxidation and insulin secretion in rat islets. Endocrine Journal, 65(4), 469–477. https://doi.org/10.1507/endocrj.EJ17-0543
Chen, M., Huang, N., Liu, J., Huang, J., Shi, J., & Jin, F. (2021). AMPK: A bridge between diabetes mellitus and Alzheimer’s disease. Behavioural Brain Research, 400, 113043. https://doi.org/10.1016/j.bbr.2020.113043
Chung, M.-Y., Choi, H.-K., & Hwang, J.-T. (2021). AMPK Activity: A Primary Target for Diabetes Prevention with Therapeutic Phytochemicals. Nutrients, 13(11), 4050. https://doi.org/10.3390/nu13114050
Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., Hashemi, M., Hushmandi, K., Ashrafizadeh, M., Zarrabi, A., Ertas, Y. N., Mirzaei, S., & Samarghandian, S. (2022). AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy, 146, 112563. https://doi.org/10.1016/j.biopha.2021.112563
Fang, K., & Gu, M. (2020). Crocin Improves Insulin Sensitivity and Ameliorates Adiposity by Regulating AMPK-CDK5-PPAR γ Signaling. BioMed Research International, 2020, 1–8. https://doi.org/10.1155/2020/9136282
Garcia, D., & Shaw, R. J. (2017). AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 66(6), 789–800. https://doi.org/10.1016/j.molcel.2017.05.032
Guo, S., Wang, G., & Yang, Z. (2021). Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. Journal of Receptors and Signal Transduction, 41(1), 85–92. https://doi.org/10.1080/10799893.2020.1789877
Hsu, F.-L., Huang, C.-F., Chen, Y.-W., Yen, Y.-P., Wu, C.-T., Uang, B.-J., Yang, R.-S., & Liu, S.-H. (2013). Antidiabetic Effects of Pterosin A, a Small-Molecular-Weight Natural Product, on Diabetic Mouse Models. Diabetes, 62(2), 628–638. https://doi.org/10.2337/db12-0585
Kang, M.-C., Wijesinghe, W. A. J. P., Lee, S.-H., Kang, S.-M., Ko, S.-C., Yang, X., Kang, N., Jeon, B.-T., Kim, J., Lee, D.-H., & Jeon, Y.-J. (2013). Dieckol isolated from brown seaweed Ecklonia cava attenuates type ІІ diabetes in db/db mouse model. Food and Chemical Toxicology, 53, 294–298. https://doi.org/10.1016/j.fct.2012.12.012
Karunakaran, U., Elumalai, S., Moon, J. S., & Won, K. C. (2021). Pioglitazone-induced AMPK-Glutaminase-1 prevents high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biology, 45, 102029. https://doi.org/10.1016/j.redox.2021.102029
Lee, H. A., Cho, J.-H., Afinanisa, Q., An, G.-H., Han, J.-G., Kang, H. J., Choi, S. H., & Seong, H.-A. (2020). Ganoderma lucidum Extract Reduces Insulin Resistance by Enhancing AMPK Activation in High-Fat Diet-Induced Obese Mice. Nutrients, 12(11), 3338. https://doi.org/10.3390/nu12113338
Li, J., Ding, X., Jian, T., Lü, H., Zhao, L., Li, J., Liu, Y., Ren, B., & Chen, J. (2020). Four sesquiterpene glycosides from loquat ( Eriobotrya japonica ) leaf ameliorates palmitic acid-induced insulin resistance and lipid accumulation in HepG2 Cells via AMPK signaling pathway. PeerJ, 8, e10413. https://doi.org/10.7717/peerj.10413
Li, S., Zhang, Y., Sun, Y., Zhang, G., Bai, J., Guo, J., Su, X., Du, H., Cao, X., Yang, J., & Wang, T. (2019). Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutrition & Diabetes, 9(1), 28. https://doi.org/10.1038/s41387-019-0095-8
Morrow, N. M., Burke, A. C., Samsoondar, J. P., Seigel, K. E., Wang, A., Telford, D. E., Sutherland, B. G., O’Dwyer, C., Steinberg, G. R., Fullerton, M. D., & Huff, M. W. (2020). The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. Journal of Lipid Research, 61(3), 387–402. https://doi.org/10.1194/jlr.RA119000542
Qiu, W.-Q., Pan, R., Tang, Y., Zhou, X.-G., Wu, J.-M., Yu, L., Law, B. Y.-K., Ai, W., Yu, C.-L., Qin, D.-L., & Wu, A.-G. (2020). Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction. Biomedicine & Pharmacotherapy, 130, 110575. https://doi.org/10.1016/j.biopha.2020.110575
Rao, X. S., Cong, X. X., Gao, X. K., Shi, Y. P., Shi, L. J., Wang, J. F., Ni, C.-Y., He, M. J., Xu, Y., Yi, C., Meng, Z.-X., Liu, J., Lin, P., Zheng, L. L., & Zhou, Y. T. (2021). AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death & Differentiation, 28(12), 3214–3234. https://doi.org/10.1038/s41418-021-00809-9
Shamshoum, H., Vlavcheski, F., MacPherson, R. E. K., & Tsiani, E. (2021). Rosemary extract activates AMPK, inhibits mTOR and attenuates the high glucose and high insulin-induced muscle cell insulin resistance. Applied Physiology, Nutrition, and Metabolism, 46(7), 819–827. https://doi.org/10.1139/apnm-2020-0592
Stumvoll, M., Goldstein, B. J., & van Haeften, T. W. (2005). Type 2 diabetes: principles of pathogenesis and therapy. The Lancet, 365(9467), 1333–1346. https://doi.org/10.1016/S0140-6736(05)61032-X
Su, W.-Y., Li, Y., Chen, X., Li, X., Wei, H., Liu, Z., Shen, Q., Chen, C., Wang, Y.-P., & Li, W. (2021). Ginsenoside Rh1 Improves Type 2 Diabetic Nephropathy through AMPK/PI3K/Akt-Mediated Inflammation and Apoptosis Signaling Pathway. The American Journal of Chinese Medicine, 49(05), 1215–1233. https://doi.org/10.1142/S0192415X21500580
Tinajero, M. G., & Malik, V. S. (2021). An Update on the Epidemiology of Type 2 Diabetes. Endocrinology and Metabolism Clinics of North America, 50(3), 337–355. https://doi.org/10.1016/j.ecl.2021.05.013
Wang, S., Wang, W., Sheng, H., Bai, Y., Weng, Y., Fan, X., Zheng, F., Zhu, X., Xu, Z., & Zhang, F. (2020). Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. International Immunopharmacology, 89, 107036. https://doi.org/10.1016/j.intimp.2020.107036
Wang, X.-D., Yu, W.-L., & Sun, Y. (2021). Activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1 in acute pancreatitis. Life Sciences, 277, 119435. https://doi.org/10.1016/j.lfs.2021.119435
Xu, L., Sun, X., Zhu, G., Mao, J., Baban, B., & Qin, X. (2021). Local delivery of simvastatin maintains tooth anchorage during mechanical tooth moving via anti‐inflammation property and AMPK/MAPK/NF‐kB inhibition. Journal of Cellular and Molecular Medicine, 25(1), 333–344. https://doi.org/10.1111/jcmm.16058
Yan, J., Wang, C., Jin, Y., Meng, Q., Liu, Q., Liu, Z., Liu, K., & Sun, H. (2018). Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 130, 466–480. https://doi.org/10.1016/j.phrs.2017.12.026
Yaribeygi, H., Ashrafizadeh, M., Henney, N. C., Sathyapalan, T., Jamialahmadi, T., & Sahebkar, A. (2020). Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacological Research, 152, 104611. https://doi.org/10.1016/j.phrs.2019.104611
Zhao, M., Qin, J., Shen, W., & Wu, A. (2021). Bilobalide Enhances AMPK Activity to Improve Liver Injury and Metabolic Disorders in STZ-Induced Diabetes in Immature Rats via Regulating HMGB1/TLR4/NF-κB Signaling Pathway. BioMed Research International, 2021, 1–11. https://doi.org/10.1155/2021/8835408