Review: RNA therapy for type 1 & 2 diabetes

##plugins.themes.academic_pro.article.main##

Muhamad Ilham Bintang
Aiyi Asnawi
Widhiya Agita

Abstract

Diabetes is a group of metabolic disorders with high blood glucose levels. In type 1 diabetes, blood glucose increases due to damage to pancreatic beta cells. In type 2 diabetes, insulin production is ineffective in glucose uptake into target tissues, increasing glucose levels. Advances in RNA-based technologies indicate that RNA molecules have multiple roles in disease initiation and progression. This review discusses recent developments in RNA therapy for type 1 and type 2 diabetes. RNA therapies, such as mRNA, miRNA, siRNA, lncRNA, and circRNA, show great potential. mRNA and miRNA are important in pancreatic cell development, insulin resistance, insulin sensitivity, and insulin secretion. siRNA improves glucose regulation and improves beta cell dysfunction in T1D and T2D. lncRNAs regulate beta cell responses to inflammation and insulin resistance. circRNA plays a role in M1 macrophage activation associated with T1D pathogenesis and regulation of insulin transcription and secretion. RNA therapy offers revolutionary possibilities in the management and potential cure of type 1 and type 2 diabetes. It is believed to improve and change the clinical approach to diabetes, with research continuing to develop therapies that are safe, effective, and able to change the paradigm of diabetes treatment.

##plugins.themes.academic_pro.article.details##

How to Cite
Bintang, M. I., Asnawi, A. and Agita, W. (2024) “Review: RNA therapy for type 1 & 2 diabetes”, Science Midwifery, 12(2), pp. 944-957. doi: 10.35335/midwifery.v12i2.1594.

References

Bai, C., Gao, Y., Li, X., Wang, K., Xiong, H., Shan, Z., Zhang, P., Wang, W., Guan, W., & Ma, Y. (2017). MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 11(12), 3457–3468. https://doi.org/10.1002/term.2259
Burnett, J.C., & Rossi, J.J. (2012). RNA-based therapeutics: Current progress and future prospects. Chemistry and Biology, 19(1), 60–71. https://doi.org/10.1016/j.chembiol.2011.12.008
Care, D., & Suppl, S.S. (2019). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetesd2019. Diabetes Care, 42(January), S13–S28. https://doi.org/10.2337/dc19-S002
Cech, T.R., & Steitz, J.A. (2014). The noncoding RNA revolution - Trashing old rules to forge new ones. Cell, 157(1), 77–94. https://doi.org/10.1016/j.cell.2014.03.008
Chen, G., Yu, D., Nian, X., Liu, J., Koenig, R. J., Xu, B., & Sheng, L. (2016). LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL). Scientific Reports, 6(October), 1–13. https://doi.org/10.1038/srep35531
Cheng, L.J., Chen, J.H., Lin, M.Y., Chen, L.C., Lao, C.H., Luh, H., & Hwang, S.J. (2015). A competing risk analysis of sequential complication development in Asian type 2 diabetes mellitus patients. Scientific Reports, 5(October), 1–11. https://doi.org/10.1038/srep15687
Coskun, E., Ercin, M., & Gezginci-Oktayoglu, S. (2018). The Role of Epigenetic Regulation and Pluripotency-Related MicroRNAs in Differentiation of Pancreatic Stem Cells to Beta Cells. Journal of Cellular Biochemistry, 119(1), 455–467. https://doi.org/10.1002/jcb.26203
Dabelea, D., Rewers, A., Stafford, J.M., Standiford, D.A., Lawrence, J.M., Saydah, S., Imperatore, G., D'Aǵostino, R.B., Mayer-Davis, E.J., & Pihoker, C. (2014). Trends in the prevalence of ketoacidosis at diabetes diagnosis: The search for diabetes in youth study. Pediatrics, 133(4). https://doi.org/10.1542/peds.2013-2795
Deravi, C. (2023). BioGecko BioGecko. Biogecko, 12(01), 316–324.
Devaux, Y., Zangrando, J., Schroen, B., Creemers, E.E., Pedrazzini, T., Chang, C.P., Dorn, G.W., Thum, T., & Heymans, S. (2015). Long noncoding RNAs in cardiac development and aging. Nature Reviews Cardiology, 12(7), 415–425. https://doi.org/10.1038/nrcardio.2015.55
Ellis, B.C., Graham, L.D., & Molloy, P.L. (2014). CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochimica et Biophysica Acta - Molecular Cell Research, 1843(2), 372–386. https://doi.org/10.1016/j.bbamcr.2013.10.016
Engelmann, I., Alidjinou, E.K., Bertin, A., Bossu, J., Villenet, C., Figeac, M., Sane, F., & Hober, D. (2017). Persistent coxsackievirus B4 infection induces microRNA dysregulation in human pancreatic cells. Cellular and Molecular Life Sciences, 74(20), 3851–3861. https://doi.org/10.1007/s00018-017-2567-0
Fan, W., Pang, H., Shi, X., Li, J., Wang, Y., Luo, S., Lin, J., Yu, H., Xiao, Y., Li, Huang, G., Xie, Z., & Zhou, Z. (2022). Plasma-derived exosomal mRNA profiles associated with type 1 diabetes mellitus. Frontiers in Immunology, 13(September), 1–14. https://doi.org/10.3389/fimmu.2022.995610
Fan, W., Pang, H., Xie, Z., & Huang, G. (2022). Circular RNAs in diabetes mellitus and its complications. 2045(August), 1–17. https://doi.org/10.3389/fendo.2022.885650
Fang, Y., Wang, X., Li, W., Han, J., Jin, J., & Su, FEI (2018). Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. 1865–1874. https://doi.org/10.3892/ijmm.2018.3783
Fishman, S., Lewis, MD, Siew, LK, De Leenheer, E., Kakabadse, D., Davies, J., Ziv, D., Margalit, A., Karin, N., Gross, G., & Wong, F.S. (2017). Adoptive Transfer of mRNA-Transfected T Cells Redirected against Diabetogenic CD8 T Cells Can Prevent Diabetes. Molecular Therapy, 25(2), 456–464. https://doi.org/10.1016/j.ymthe.2016.12.007
Gan, L.M., Lagerström-Fermér, M., Carlsson, L.G., Arfvidsson, C., Egnell, A.C., Rudvik, A., Kjaer, M., Collén, A., Thompson, JD, Joyal, J., Chialda, L., Koernicke, T., Fuhr, R., Chien, K.R., & Fritsche-Danielson, R. (2019). Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-08852-4
Ghasemi, H., Sabati, Z., Ghaedi, H., Salehi, Z., & Alipoor, B. (2019). Circular RNAs in β-cell function and type 2 diabetes-related complications: a potential diagnostic and therapeutic approach. Molecular Biology Reports, 46(5), 5631–5643. https://doi.org/10.1007/s11033-019-04937-x
Harcourt, B.E., Penfold, S.A., & Forbes, J.M. (2013). Coming full circle in diabetes mellitus: From complications to initiation. Nature Reviews Endocrinology, 9(2), 113–123. https://doi.org/10.1038/nrendo.2012.236
He, A., Zhu, L., Gupta, N., Chang, Y., & Fang, F. (2007). Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Molecular Endocrinology, 21(11), 2785–2794. https://doi.org/10.1210/me.2007-0167
Higuchi, C., Nakatsuka, A., Eguchi, J., Teshigawara, S., Kanzaki, M., Katayama, A., Yamaguchi, S., Takahashi, N., Murakami, K., Ogawa, D., Sasaki, S., Makino, H., & Wada, J. (2015). Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism: Clinical and Experimental, 64(4), 489–497. https://doi.org/10.1016/j.metabol.2014.12.003
Holdt, L.M., Kohlmaier, A., & Teupser, D. (2018). Molecular roles and functions of circular RNAs in eukaryotic cells. Cellular and Molecular Life Sciences, 75(6), 1071–1098. https://doi.org/10.1007/s00018-017-2688-5
Hu, YW, Yang, JY, Ma, , L., & Wang, Q. (2014). A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1- dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. Journal of Lipid Research, 55(4), 681–697. https://doi.org/10.1194/jlr.M044669
Hubal, MJ, Nadler, E.P., Ferrante, S.C., Barberio, M.D., Suh, J.H., Wang, J., Dohm, G.L., Pories, W.J., Mietus-Snyder, M., & Freishtat, R.J. (2017). Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity, 25(1), 102–110. https://doi.org/10.1002/oby.21709
Ilonen, J., Lempainen, J., & Veijola, R. (2019). The heterogeneous pathogenesis of type 1 diabetes mellitus. Nature Reviews Endocrinology, 15(11), 635–650. https://doi.org/10.1038/s41574-019-0254-y
Ministry of Health of the Republic of Indonesia. (2020). Stay Productive, Prevent and Treat Diabetes Mellitus. In the data and information center of the Indonesian Ministry of Health.
LaPierre, M. P., & Stoffel, M. (2017). MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Molecular Metabolism, 6(9), 1010–1023. https://doi.org/10.1016/j.molmet.2017.06.020
Latreille, M., Hausser, J., Stützer, I., Zhang, Q., Hastoy, B., Gargani, S., Kerr-Conte, J., Pattou, F., Zavolan, M., Esguerra, J.L.S. , Eliasson, L., Rülicke, T., Rorsman, P., & Stoffel, M. (2014). MicroRNA-7a regulates pancreatic β cell function. Journal of Clinical Investigation, 124(6), 2722–2735. https://doi.org/10.1172/JCI73066
Li, C., Zhao, L., Jiang, W., Che, L., & Xu, Y. (2018). Correct microarray analysis approaches in 'Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus.' Diabetes and Vascular Disease Research, 15(1), 92–93. https://doi.org/10.1177/1479164117739435
Li, M., Duan, L., Li, Y., & Liu, B. (2019). Long noncoding RNA/circular noncoding RNA–miRNA–mRNA pathways in cardiovascular diseases. Life Sciences, 233(March), 116440. https://doi.org/10.1016/j.lfs.2019.04.066
Li, P., Ruan, X., Yang, L., Kiesewetter, K., Zhao, Y., Luo, H., Chen, Y., Gucek, M., Zhu, J., & Cao, H. (2015). A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabolism, 21(3), 455–467. https://doi.org/10.1016/j.cmet.2015.02.004
Li, Y., Lin, X., Zhao, X. J., Xie, J., JunNan, W., Sun, T., & Fu, Z. (2014). Ozone (O3) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca2+ release and activating the CaMKII/MAPK signaling pathway. Toxicology and Applied Pharmacology, 280(3), 493–501. https://doi.org/10.1016/j.taap.2014.08.024
Ling, HY, Ou, HS, Feng, SD, Zhang, XY, Tuo, QH, Chen, LX, Zhu, BY, Gao, ZP, Tang, CK, Yin, WD, Zhang, L., & Liao, DF ( 2009). Changes in microRNA (mir) profile and effects of mir-320 in insulin-resistant 3t3-l1 adipocytes. Clinical and Experimental Pharmacology and Physiology, 36(9), 32–39. https://doi.org/10.1111/j.1440-1681.2009.05207.x
Liu, L., Shi, M., Wang, Y., Zhang, C., Su, B., Xiao, Y., & Guo, B. (2017). SnoN upregulation ameliorates renal fibrosis in diabetic nephropathy. PLOS ONE, 12(3), 1–14. https://doi.org/10.1371/journal.pone.0174471
Liu, R., Liu, C., He, X., Sun, P., Zhang, B., Yang, H., Shi, W., & Ruan, Q. (2022). MicroRNA-21 promotes pancreatic β cell function through modulating glucose uptake. Nature Communications, 13(1), 1–15. https://doi.org/10.1038/s41467-022-31317-0
Liu, S., Sheng, L., Miao, H., Saunders, T.L., Macdougal, O.A., Koenig, R.J., & Xu, B. (2014). SRA gene knockout protects against diet-induced obesity and improves glucose tolerance. Journal of Biological Chemistry, 289(19), 13000–13009. https://doi.org/10.1074/jbc.M114.564658
Liu, S., Zheng, F., Xie, K., Xie, M., Jiang, L., & Cai, Y. (2019). Exercise Reduces Insulin Resistance in Type 2 Diabetes Mellitus via Mediating the lncRNA MALAT1 / MicroRNA-382-3p / Resistin Axis. Molecular Therapy: Nucleic Acids, 18(87), 34–44. https://doi.org/10.1016/j.omtn.2019.08.002
Lovis, P., Gattesco, S., & Regazzi, R. (2008). Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biological Chemistry, 389(3), 305–312. https://doi.org/10.1515/BC.2008.026
Lu, D., & Thum, T. (2019). RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nature Reviews Cardiology, 16(11), 661–674. https://doi.org/10.1038/s41569-019-0218-x
Manuscript, A. (2014). NIH Public Access. 37–47. https://doi.org/10.1016/j.phrs.2013.06.005.MicroRNAs
Morán, I., Akerman, I., Van De Bunt, M., Xie, R., Benazra, M., Nammo, T., Arnes, L., Nakić, N., García-Hurtado, J., Rodríguez -Seguí, S., Pasquali, L., Sauty-Colace, C., Beucher, A., Scharfmann, R., Van Arensbergen, J., Johnson, P.R., Berry, A., Lee, C., Harkins, T., … Ferrer, J. (2012). Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metabolism, 16(4), 435–448. https://doi.org/10.1016/j.cmet.2012.08.010
Motterle, A., Gattesco, S., Caille, D., Meda, P., & Regazzi, R. (2015). Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabeologia, 58(8), 1827–1835. https://doi.org/10.1007/s00125-015-3641-5
Motterle, A., Sanchez-Parra, C., & Regazzi, R. (2016). Role of long non-coding RNAs in the determination of β-cell identity. Diabetes, Obesity and Metabolism, 18(April), 41–50. https://doi.org/10.1111/dom.12714
Neumann, U.H., Ho, J.S.S., Chen, S., Tam, Y.Y.C., Cullis, P.R., & Kieffer, T.J. (2017). Lipid nanoparticle delivery of glucagon receptor siRNA improves glucose homeostasis in mouse models of diabetes. Molecular Metabolism, 6(10), 1161–1172. https://doi.org/10.1016/j.molmet.2017.06.012
Nigi, L., Grieco, G.E., Ventriglia, G., Brusco, N., Mancarella, F., Formichi, C., Dotta, F., & Sebastiani, G. (2018). MicroRNAs as regulators of insulin signaling: Research updates and potential therapeutic perspectives in type 2 diabetes. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19123705
Nutter, C. A., & Kuyumcu-Martinez, M. N. (2018). Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley Interdisciplinary Reviews: RNA, 9(2), 1–17. https://doi.org/10.1002/wrna.1459
Oh, S.H., Jorgensen, M.L., Wasserfall, C.H., Gjymishka, A., & Petersen, B.E. (2017). Suppression of islet protein homeostasis thwarts diabetes mellitus progression. Laboratory Investigation, 97(5), 577–590. https://doi.org/10.1038/labinvest.2017.15
Pang, H., Luo, S., Huang, G., Xia, Y., Xie, Z., & Zhou, Z. (2020). Advances in Knowledge of Candidate Genes Acting at the Beta-Cell Level in the Pathogenesis of T1DM. Frontiers in Endocrinology, 11(March), 1–11. https://doi.org/10.3389/fendo.2020.00119
Pardi, N., Hogan, M.J., Porter, F.W., & Weissman, D. (2018). mRNA vaccines-a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243
Pravin, S., & Chirag, P. (2018). Ac ce pt ed us cr t. Journal of Drug Targeting, 0(0), 000. https://doi.org/10.1080/1061186X.2018.1476518
Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Zheng, Q., Li, G., Teng, Y., Wu, M., & Song, X. (2022). mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01007-w
Sahin, U., Karikó, K., & Türeci, Ö. (2014). MRNA-based therapeutics-developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759–780. https://doi.org/10.1038/nrd4278
Sakshi, S., Jayasuriya, R., Ganesan, K., Xu, B., & Ramkumar, K. M. (2021). Role of circRNA-miRNA-mRNA interaction network in diabetes and its associated complications. Molecular Therapy Nucleic Acids, 26(December), 1291–1302. https://doi.org/10.1016/j.omtn.2021.11.007
Schneider, ALC, Kalyani, R.R., Golden, S., Stearns, S.C., Wruck, L., Yeh, H.C., Coresh, J., & Selvin, E. (2016). Diabetes and prediabetes and risk of hospitalization: The atherosclerosis risk in communities (ARIC) study. Diabetes Care, 39(5), 772–779. https://doi.org/10.2337/dc15-1335
Sebastiani, G., Po, A., Miele, E., Ventriglia, G., Ceccarelli, E., Bugliani, M., Marselli, L., Marchetti, P., Gulino, A., Ferretti, E., & Dotta, F. (2015). MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion. Acta Diabetolica, 52(3), 523–530. https://doi.org/10.1007/s00592-014-0675-y
Sebastiani, G., Valentini, M., Grieco, G.E., Ventriglia, G., Nigi, L., Mancarella, F., Pellegrini, S., Martino, G., Sordi, V., Piemonti, L., & Dotta, F. (2017). MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells. Acta Diabetolica, 54(3), 265–281. https://doi.org/10.1007/s00592-016-0955-9
Shan, K., Liu, C., Liu, BH, Chen, X., Dong, R., Liu, Wu, J. H., Zhao, C., & Yan, B. (2017). Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation, 136(17), 1629–1642. https://doi.org/10.1161/CIRCULATIONAHA.117.029004
Sims, E.K., Lakhter, A.J., Anderson-Baucum, E., Kono, T., Tong, X., & Evans-Molina, C. (2017). MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabeologia, 60(6), 1057–1065. https://doi.org/10.1007/s00125-017-4237-z
Skyler, JS, Bakris, G.L., Bonifacio, E., Darsow, T., Eckel, R.H., Groop, L., Groop, P.H., Handelsman, Y., Insel, R.A., Mathieu, C., McElvaine, A.T., Palmer , J.P., Pugliese, A., Schatz, D.A., Sosenko, J.M., Wilding, J.P.H., & Ratner, R.E. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes, 66(2), 241–255. https://doi.org/10.2337/db16-0806
Stoll, L., Sobel, J., Rodriguez-Trejo, A., Guay, C., Lee, K., Venø, M.T., Kjems, J., Laybutt, D.R., & Regazzi, R. (2018). Circular RNAs as novel regulators of β-cell function in normal and disease conditions. Molecular Metabolism, 9, 69–83. https://doi.org/10.1016/j.molmet.2018.01.010
Sullenger, B. A., & Nair, S. (2016). .
Suwal, A., Hao, JL, Liu, XF, Zhou, DD, Pant, OP, Gao, Y., Hui, P., Dai, XX, & Lu, CW (2019). Nonratt021972 long-noncoding rna: A promising lncrna in diabetes-related diseases. International Journal of Medical Sciences, 16(6), 902–908. https://doi.org/10.7150/ijms.34200
Tattikota, S.G., Rathjen, T., Hausser, J., Khedkar, A., Kabra, UD, Pandey, V., Sury, M., Wessels, HH, Mollet, I.G., Eliasson, L., Selbach, M. , Zinzen, R.P., Zavolan, M., Kadener, S., Tschöp, M.H., Jastroch, M., Friedländer, M.R., & Poy, M.N. (2015). miR-184 regulates pancreatic β-cell function according to glucose metabolism. Journal of Biological Chemistry, 290(33), 20284–20294. https://doi.org/10.1074/jbc.M115.658625
Thum, T. (2014). Noncoding RNAs and myocardial fibrosis. Nature Reviews Cardiology, 11(11), 655–663. https://doi.org/10.1038/nrcardio.2014.125
Tian, Y., Xu, J., Du, X., & Fu, X. (2018). The interplay between noncoding RNAs and insulin in diabetes. Cancer Letters, 419, 53–63. https://doi.org/10.1016/j.canlet.2018.01.038
Trajkovski, M., Hausser, J., Soutschek, J., Bhat, B., Akin, A., Zavolan, M., Heim, M. H., & Stoffel, M. (2011). MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 474(7353), 649–653. https://doi.org/10.1038/nature10112
Vivacqua, A., Marco, P. De, Belfiore, A., & Maggiolini, M. (2017). Recent Advances on the Role of microRNAs in Both Insulin Resistance and Cancer. Current Pharmaceutical Design, 23(25), 3658–3666. https://doi.org/10.2174/1381612823666170622105123
Wasserfall, C., Nick, H.S., Campbell-Thompson, M., Beachy, D., Haataja, L., Kusmartseva, I., Posgai, A., Beery, M., Rhodes, C., Bonifacio, E. , Arvan, P., & Atkinson, M. (2017). Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metabolism, 26(3), 568-575.e3. https://doi.org/10.1016/j.cmet.2017.08.013
Wong, WKM, Sørensen, AE, Joglekar, MV, Hardikar, AA, & Dalgaard, LT (2018). Non-coding RNA in pancreas and β-cell development. Non-coding RNA, 4(4). https://doi.org/10.3390/ncrna4040041
Xu, B., Gerin, I., Miao, H., Vu-Phan, D., Johnson, CN, Xu, R., Chen, XW, Cawthorn, WP, MacDougald, OA, & Koenig, RJ (2010) . Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLOS ONE, 5(12). https://doi.org/10.1371/journal.pone.0014199
Xu, H., Guo, S., Li, W., & Yu, P. (2015). The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Scientific Reports, 5(July), 1–12. https://doi.org/10.1038/srep12453
Zhang, C., Han, X., Yang, L., Fu, J., Sun, C., & Huang, S. (2020). Theranostics Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. 10(24). https://doi.org/10.7150/thno.48264
Zhang, J.R., & Sun, H.J. (2020). Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Gene, 763(1800), 145066. https://doi.org/10.1016/j.gene.2020.145066
Zhao, W., Liang, J., Chen, Z., Diao, Y., & Miao, G. (2020). Combined analysis of circRNA and mRNA profiles and interactions in patients with Diabetic Foot and Diabetes Mellitus. International Wound Journal, 17(5), 1183–1193. https://doi.org/10.1111/iwj.13420
Zhao, Z., Li, X., Jian, D., Hao, P., Rao, L., & Li, M. (2017). Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetolica, 54(3), 237–245. https://doi.org/10.1007/s00592-016-0943-0
Zhou, B., & Yu, J. W. (2017). A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochemical and Biophysical Research Communications, 487(4), 769–775. https://doi.org/10.1016/j.bbrc.2017.04.044
Zhou, R., Wu, Y., Wang, W., Su, W., Liu, Y., Wang, Y., Fan, C., Li, X., Li, G., Li, Y., Xiong, W., & Zeng, Z. (2018). Circular RNAs (circRNAs) in cancer. Cancer Letters, 425, 134–142. https://doi.org/10.1016/j.canlet.2018.03.035
Zogg, H., Singh, R., & Ro, S. (2022). Current Advances in RNA Therapeutics for Human Diseases. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052736