Reproductive and developmental effects of carbon nanotube exposure: A systematic review

##plugins.themes.academic_pro.article.main##

Santi Febri Arianti

Abstract

Carbon nanotubes (CNTs) are nanoscale materials widely utilized in medical and industrial fields due to their unique physicochemical properties. However, growing exposure to CNTs—particularly during pregnancy—has raised concerns about their potential impact on reproductive health and fetal development. This review aims to identify and evaluate scientific evidence on the effects of CNT exposure on reproductive systems, pregnancy outcomes, and fetal development in both humans and animals, while also exploring the underlying biological mechanisms. A systematic review was conducted in accordance with the PRISMA 2020 guidelines. Literature searches were performed across PubMed, Scopus, Web of Science, and Google Scholar using combinations of keywords related to CNTs, pregnancy, fertility, and toxicity. Articles that met the inclusion criteria were screened and analyzed narratively according to thematic outcomes. Study quality was assessed using the SYRCLE and Newcastle-Ottawa Scale tools. A total of 43 studies were included. CNT exposure was associated with disrupted reproductive cycles, reduced sperm quality, miscarriage, placental dysfunction, and fetal developmental abnormalities. The primary mechanisms involved oxidative stress, inflammation, hormonal disruption, and epigenetic alterations with transgenerational effects. CNTs have the potential to adversely affect reproductive health and fetal development. This review highlights the urgent need for awareness, protective regulations, and further research in human populations to reduce risks to maternal and child health in the context of expanding nanotechnology applications.

##plugins.themes.academic_pro.article.details##

How to Cite
Arianti, S. F. (2025) “Reproductive and developmental effects of carbon nanotube exposure: A systematic review”, Science Midwifery, 13(1), pp. 345-354. doi: 10.35335/midwifery.v13i1.1914.

References

Acharya, B., Behera, A., Moharana, S., Prajapati, B. G., & Behera, S. (2025). Nanoparticle-Mediated Embryotoxicity: Mechanisms of Chemical Toxicity and Implications for Biological Development. Chemical Research in Toxicology. https://doi.org/10.1021/acs.chemrestox.4c00472
Adams, S., & Stapleton, P. A. (2023). Nanoparticles at the maternal-fetal interface. Molecular and Cellular Endocrinology, 578, 112067. https://doi.org/https://doi.org/10.1016/j.mce.2023.112067
Al Moustafa, A.-E., Mfoumou, E., Roman, D. E., Nerguizian, V., Alazzam, A., Stiharu, I., & Yasmeen, A. (2016). Impact of single-walled carbon nanotubes on the embryo: a brief review. International Journal of Nanomedicine, 11, 349–355. https://doi.org/10.2147/IJN.S96361
Ali, A., Rahimian Koloor, S. S., Alshehri, A. H., & Arockiarajan, A. (2023). Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review. Journal of Materials Research and Technology, 24, 6495–6521. https://doi.org/https://doi.org/10.1016/j.jmrt.2023.04.072
Anzar, N., Hasan, R., Tyagi, M., Yadav, N., & Narang, J. (2020). Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International, 1, 100003. https://doi.org/https://doi.org/10.1016/j.sintl.2020.100003
Campagnolo, L., Massimiani, M., Palmieri, G., Bernardini, R., Sacchetti, C., Bergamaschi, A., Vecchione, L., Magrini, A., Bottini, M., & Pietroiusti, A. (2013). Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Particle and Fibre Toxicology, 10(1), 21. https://doi.org/10.1186/1743-8977-10-21
Chetyrkina, M. R., Fedorov, F. S., & Nasibulin, A. G. (2022). In vitro toxicity of carbon nanotubes: a systematic review. RSC Advances, 12(25), 16235–16256. https://doi.org/10.1039/D2RA02519A
Coa, F., Bortolozzo, L., Avila, D., Souza Filho, A., & Martinez, D. (2023). Toxicology of carbon nanomaterials in the Caenorhabditis elegans model: current status, characterization, and perspectives for testing harmonization. Frontiers in Carbon, 2. https://doi.org/10.3389/frcrb.2023.1241637
Cole, E. M. (Universit. of M. (2020). Epigenetic Alterations in Response to Multi-Walled Carbon Nanotubes and DHA Diet Modification [University of Montana]. https://scholarworks.umt.edu/etd/11620/
de Andrade, L. R. M., Andrade, L. N., Bahú, J. O., Cárdenas Concha, V. O., Machado, A. T., Pires, D. S., Santos, R., Cardoso, T. F. M., Cardoso, J. C., Albuquerque-Junior, R. L. C., Severino, P., & Souto, E. B. (2024). Biomedical applications of carbon nanotubes: A systematic review of data and clinical trials. Journal of Drug Delivery Science and Technology, 99, 105932. https://doi.org/https://doi.org/10.1016/j.jddst.2024.105932
Dos Santos, R. R., Nunes Paiva, M. J., Veloso, J. C., Serp, P., Lourdes Cardeal, Z. de, & Menezes, H. C. (2017). Efficient extraction method using magnetic carbon nanotubes to analyze cocaine and benzoylecgonine in breast milk by GC/MS. Bioanalysis, 9(21), 1655–1666. https://doi.org/10.4155/bio-2017-0140
Farshad, O., Heidari, R., Zamiri, M. J., Retana-Márquez, S., Khalili, M., Ebrahimi, M., Jamshidzadeh, A., & Ommati, M. M. (2020). Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Frontiers in Veterinary Science, 7, 591558. https://doi.org/10.3389/fvets.2020.591558
Fernández Zapata, W. F., Cardona Maya, Y., Isaza Merino, C., & Cardona Maya, W. D. (2024). Effects of nanotubes on semen quality and fertility in humans: A systematic review of literature. Archivio Italiano Di Urologia, Andrologia : Organo Ufficiale [Di] Societa Italiana Di Ecografia Urologica e Nefrologica, 96(1), 12192. https://doi.org/10.4081/aiua.2024.12192
Fujitani, T., Ohyama, K., Hirose, A., Nishimura, T., Nakae, D., & Ogata, A. (2012). Teratogenicity of multi-wall carbon nanotube (MWCNT) in ICR mice. The Journal of Toxicological Sciences, 37(1), 81–89. https://doi.org/10.2131/jts.37.81
Ghosh, M., Godderis, L., & Hoet, P. (2022). Epigenetic Mechanisms in Understanding Nanomaterial-Induced Toxicity. Advances in Experimental Medicine and Biology, 1357, 195–223. https://doi.org/10.1007/978-3-030-88071-2_9
Ghosh, M., Öner, D., Duca, R. C., Bekaert, B., Vanoirbeek, J. A. J., Godderis, L., & Hoet, P. H. M. (2018). Single-walled and multi-walled carbon nanotubes induce sequence-specific epigenetic alterations in 16 HBE cells. Oncotarget, 9(29), 20351–20365. https://doi.org/10.18632/oncotarget.24866
Hansen, J. S., Thomas S., R., Hannah K. L., J., Kenneth K., B., Søren T., L., Jorid B., S., Émilie, da S., Ulla, V., & and Hougaard, K. S. (2020). Pre-conceptional exposure to multiwalled carbon nanotubes suppresses antibody production in mouse offspring. Nanotoxicology, 14(5), 711–724. https://doi.org/10.1080/17435390.2020.1755468
Havelikar, U., Ghorpade, K. B., Kumar, A., Patel, A., Singh, M., Banjare, N., & Gupta, P. N. (2024). Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discover Nano, 19(1), 165. https://doi.org/10.1186/s11671-024-04118-1
Hofer, S., Hofstätter, N., Punz, B., Hasenkopf, I., Johnson, L., & Himly, M. (2022). Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 14(6), e1804. https://doi.org/10.1002/wnan.1804
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14(1), 43. https://doi.org/10.1186/1471-2288-14-43
Hougaard, K. S., Jackson, P., Kyjovska, Z. O., Birkedal, R. K., De Temmerman, P.-J., Brunelli, A., Verleysen, E., Madsen, A. M., Saber, A. T., Pojana, G., Mast, J., Marcomini, A., Jensen, K. A., Wallin, H., Szarek, J., Mortensen, A., & Vogel, U. (2013). Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice. Reproductive Toxicology (Elmsford, N.Y.), 41, 86–97. https://doi.org/10.1016/j.reprotox.2013.05.006
Huo, G., Qin, Y., Bao, X., Yao, X., Pu, Z., Sun, J., & Gopinath, S. C. B. (2020). Gold star–carbon nanotube composite for analysing preeclampsia during pregnancy. Applied Physics A, 126(2), 111. https://doi.org/10.1007/s00339-020-3287-0
Ivani, S., Karimi, I., Tabatabaei, S. R. F., & Syedmoradi, L. (2016). Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice. Toxicology and Industrial Health, 32(7), 1293–1301. https://doi.org/10.1177/0748233714555388
Kolosnjaj-Tabi, J., Just, J., Hartman, K. B., Laoudi, Y., Boudjemaa, S., Alloyeau, D., Szwarc, H., Wilson, L. J., & Moussa, F. (2015). Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children. EBioMedicine, 2(11), 1697–1704. https://doi.org/10.1016/j.ebiom.2015.10.012
Li, J., Gao, H., Xu, Z., Gao, B., Zhang, L., Su, B., Yang, S., Liu, J., Liu, Y., Wang, X., Wang, H., Lin, Y., & Shen, H. (2025). Gestational exposure to carbon black nanoparticles triggered fetal growth restriction in mice: The mediation of inactivating autophagy-lysosomal degradation system in placental ferroptosis. Science of The Total Environment, 959, 178167. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.178167
Lim, J.-H., Kim, S.-H., Lee, I.-C., Moon, C., Kim, S.-H., Shin, D.-H., Kim, H.-C., & Kim, J.-C. (2011). Evaluation of Maternal Toxicity in Rats Exposed to Multi-Wall Carbon Nanotubes during Pregnancy. Environ Anal Health Toxicol, 26(0), e2011006. https://doi.org/10.5620/eht.2011.26.e2011006
Mohammadi, E, Zeinali, M, Mohammadi-Sardoo, M, Iranpour, M, Behnam, B, & Mandegary, A. (2020). The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Human & Experimental Toxicology, 39(9), 1147–1167. https://doi.org/10.1177/0960327119899988
Mugo, S., Alberkant, J., Bernstein, N., & Zenkina, O. (2021). Flexible elecrochemical aptasensor for cortisol detection in human sweat. Analytical Methods, 13. https://doi.org/10.1039/D1AY01233A
Nasim, I., Ghani, N., Nawaz, R., Irfan, A., Arshad, M., Nasim, M., Raish, M., Irshad, M. A., Ghumman, S. A., Ahmad, A., & Bin Jardan, Y. A. (2024). Investigating the Impact of Carbon Nanotube Nanoparticle Exposure on Testicular Oxidative Stress and Histopathological Changes in Swiss albino Mice. ACS Omega, 9(6), 6731–6740. https://doi.org/10.1021/acsomega.3c07919
Öner, D., Moisse, M., Ghosh, M., Duca, R. C., Poels, K., Luyts, K., Putzeys, E., Cokic, S. M., Van Landuyt, K., Vanoirbeek, J., Lambrechts, D., Godderis, L., & Hoet, P. H. M. (2017). Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis, 32(1), 181–191. https://doi.org/10.1093/mutage/gew053
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
Philbrook, N., Walker, V., Afrooz, A. R. M. N., & Saleh, N. (2011). Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice. Reproductive Toxicology (Elmsford, N.Y.), 32, 442–448. https://doi.org/10.1016/j.reprotox.2011.09.002
Qi, W., Bi, J., Zhang, X., Wang, J., Wang, J., Liu, P., Li, Z., & Wu, W. (2014). Damaging Effects of Multi-walled Carbon Nanotubes on Pregnant Mice with Different Pregnancy Times. Scientific Reports, 4(1), 4352. https://doi.org/10.1038/srep04352
Qin, Y., He, S., Peng, H., Ye, X., Zhang, H., & Ding, S. (2023). Dibutyl Phthalate Adsorbed on Multiwalled Carbon Nanotubes Causes Fetal Developmental Toxicity in Balb/C Mice. Toxics, 11(7). https://doi.org/10.3390/toxics11070565
Roncati, L. (2022). Nanoparticles and pregnancy: from benchside to the community. Clinical and Experimental Obstetrics and Gynecology, 49(5), 10–13. https://doi.org/10.31083/j.ceog4905104
Saleemi, M. A., Hosseini Fouladi, M., Yong, P. V. C., Chinna, K., Palanisamy, N. K., & Wong, E. H. (2021). Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chemical Research in Toxicology, 34(1), 24–46. https://doi.org/10.1021/acs.chemrestox.0c00172
Seo, J. Y., Mostafiz, B., Tu, X., Khripin, C. Y., Zheng, M., Li, H., & Peltola, E. (2025). Single-chirality single-wall carbon nanotubes for electrochemical biosensing. Physical Chemistry Chemical Physics, 4959–4967. https://doi.org/10.1039/d4cp04206a
Shajan, S. R. O., Sadashivappa, N. M., Hanumanthappa, D., Walikar, S. K., Dinesh, B. G. H., Kumar, B. S., Kunjiappan, S., Theivendren, P., Alagarsamy, S. K. K., Chidamabaram, K., Ammunje, D. N., & Pavadai, P. (2025). Exploring the potential application of single-walled carbon nanotubes in medical treatment and therapy. Talanta Open, 11, 100392. https://doi.org/https://doi.org/10.1016/j.talo.2024.100392
Sree, B. K., Kumar, N., & Singh, S. (2024). Reproductive toxicity perspectives of nanoparticles: an update. Toxicology Research, 13(3), tfae077. https://doi.org/10.1093/toxres/tfae077
Stapleton, P. A., McBride, C. R., Yi, J., Abukabda, A. B., & Nurkiewicz, T. R. (2018). Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reproductive Toxicology, 78, 20–28. https://doi.org/https://doi.org/10.1016/j.reprotox.2018.03.001
Teng, C., Jiang, C., Gao, S., Liu, X., & Zhai, S. (2021). Fetotoxicity of Nanoparticles: Causes and Mechanisms. In Nanomaterials (Vol. 11, Issue 3). https://doi.org/10.3390/nano11030791
Wang, Zengjin, & Wang, Zhiping. (2020). Nanoparticles induced embryo–fetal toxicity. Toxicology and Industrial Health, 36(3), 181–213. https://doi.org/10.1177/0748233720918689
Wang, Z., & Wang, Z. (2021). Identification of risk factors for in-hospital death of COVID-19 pneumonia--lessions from the early outbreak. BMC Infectious Diseases, 21(1), 1–10.
Wells, G., Shea, B., O’Connell, D., Peterson, je, Welch, V., Losos, M., & Tugwell, P. (2000). The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. ᅟ, ᅟ.
Xuan, L., Ju, Z., Skonieczna, M., Zhou, P.-K., & Huang, R. (2023). Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm, 4(4), e327. https://doi.org/10.1002/mco2.327
Yadav, B., & Yadav, J. S. (2024). Carbon Nanotube Immunotoxicity in Alveolar Epithelial Type II Cells Is Mediated by Physical Contact-Independent Cell-Cell Interaction with Macrophages as Demonstrated in an Optimized Air-Liquid Interface (ALI) Coculture Model. Nanomaterials (Basel, Switzerland), 14(15). https://doi.org/10.3390/nano14151273
Yan, H., Xue, Z., Xie, J., Dong, Y., Ma, Z., Sun, X., Kebebe Borga, D., Liu, Z., & Li, J. (2019). Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. International Journal of Nanomedicine, 14, 10179–10194. https://doi.org/10.2147/IJN.S220087
Yang, H., Du, L., Wu, G., Wu, Z., & Keelan, J. A. (2018). Murine exposure to gold nanoparticles during early pregnancy promotes abortion by inhibiting ectodermal differentiation. Molecular Medicine (Cambridge, Mass.), 24(1), 62. https://doi.org/10.1186/s10020-018-0061-2
Zare-Zardini, H., Hatamizadeh, N., Haddadzadegan, N., Soltaninejad, H., & Zarchi, M. (2021). Advantages and disadvantages of using Carbon Nanostructures in Reproductive Medicine: two sides of the same coin. JBRA Assisted Reproduction, 26. https://doi.org/10.5935/1518-0557.20210070
Zeng, P.-Y., Tsai, Y.-H., Lee, C.-L., Ma, Y.-K., & Kuo, T.-H. (2023). Minimal influence of estrous cycle on studies of female mouse behaviors. Frontiers in Molecular Neuroscience, 16, 1146109. https://doi.org/10.3389/fnmol.2023.1146109
Zhao, Y., Hua, X., Rui, Q., & Wang, D. (2023). Exposure to multi-walled carbon nanotubes causes suppression in octopamine signal associated with transgenerational toxicity induction in C. elegans. Chemosphere, 318, 137986. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.137986