Screening Of α-Amylase Inhibitor Rhodomyrtus tomentosa (Aiton) Hassk. By Docking Method

##plugins.themes.academic_pro.article.main##

samsul hadi

Abstract

Diabetes cases in Indonesia are increasing along with economic growth and people’s welfare, so the use of oral drugs for diabetes mellitus is also increasing. One of the drugs used is acarbose, this drug works as an α-amylase inhibitor. With the increasing use of drugs causing side effects on the body, it is necessary to screen natural ingredients for alternative treatments of diabetes mellitus. The natural ingredient used in this research is R. tomentosa. The docking method used to find interaction stability is pyrex. The result of this research are alpha-Tocopherol quinone (-5,1 kcal/mol); blumeatin (-7,3 kcal/mol); methyl cinnamate (-5,1 kcal/mol); myricetin (-7,7 kcal/mol); naringenin (-7,0 kcal/mol); quercetin (-7,5 kcal/mol); rhodomyrtone (-7,4 kcal/mol); rhodomyrtosone B (-7,3 kcal/mol); rhodomyrtosone C (-8,8 kcal/mol); tetrahydroxyflavanone (-7,2 kcal/mol); tocopherol A (-7,8 kcal/mol); and verimol K (-6,4 kcal/mol). Based on the screening of R. tomentosa content as an α-amylase inhibitor using the docking method, it can be concluded that the compound which has interaction stability is rhodomyrtosone C

##plugins.themes.academic_pro.article.details##

How to Cite
hadi, samsul (2021) “Screening Of α-Amylase Inhibitor Rhodomyrtus tomentosa (Aiton) Hassk. By Docking Method”, Science Midwifery, 10(1, October), pp. 29-35. Available at: https://midwifery.iocspublisher.org/index.php/midwifery/article/view/136 (Accessed: 16October2021).

References

[1] I. D. F. D. Atlas, International Diabetes Federation, vol. 266, no. 6881. 2019.
[2] A. K. Wardani, N. Santoso, and R. A. Asmara, “Sistem Pakar Diagnosa Penyakit Diabetes Melitus,” J. Inform. Polinema, vol. 1, no. 1, p. 65, 2014, doi: 10.33795/jip.v1i1.93.
[3] R. et. a. Matthew C, “Standards of Medical Care in Diabetes 2020 ADA,” Am. Diabetes Assoc., vol. 43, no. 479, pp. 960–1010, 2020, [Online]. Available: https://care.diabetesjournals.org/content/diacare/suppl/2019/12/20/43.Supplement_1.DC1/Standards_of_Care_2020.pdf.
[4] S. Chiba, “Molecular Mechanism in α-Glucosidase and Glucoamylase,” Biosci. Biotechnol. Biochem., vol. 61, no. 8, pp. 1233–1239, Jan. 1997, doi: 10.1271/bbb.61.1233.
[5] B. Svensson, “Regional distant sequence homology between amylases, alpha-glucosidases and transglucanosylases.,” FEBS Lett., vol. 230, no. 1–2, pp. 72–76, Mar. 1988, doi: 10.1016/0014-5793(88)80644-6.
[6] L. K. Campbell, J. R. White, and R. K. Campbell, “Acarbose: its role in the treatment of diabetes mellitus.,” Ann. Pharmacother., vol. 30, no. 11, pp. 1255–1262, Nov. 1996, doi: 10.1177/106002809603001110.
[7] L. K. Campbell, D. E. Baker, and R. K. Campbell, “Miglitol: assessment of its role in the treatment of patients with diabetes mellitus.,” Ann. Pharmacother., vol. 34, no. 11, pp. 1291–1301, Nov. 2000, doi: 10.1345/aph.19269.
[8] G. Febriyanto, M. I. Saleh, and T. Theodorus, “Efektivitas Antidiabetes Fraksi Air Daun Karamunting (Rhodomyrtus Tomentosa (Ait.) Hassk.) terhadap Kadar Glukosa Darah dan Sekresi Insulin pada Tikus Model Diabetes,” J. Ilm. Kedokt. Wijaya Kusuma, vol. 10, no. 1, p. 57, 2021, doi: 10.30742/jikw.v10i1.1098.
[9] H. C. Ong and M. Nordiana, “Malay ethno-medico botany in Machang, Kelantan, Malaysia,” Fitoterapia, vol. 70, no. 5, pp. 502–513, 1999, doi: https://doi.org/10.1016/S0367-326X(99)00077-5.
[10] P. Benkert, M. Biasini, and T. Schwede, “Toward the estimation of the absolute quality of individual protein structure models.,” Bioinformatics, vol. 27, no. 3, pp. 343–350, Feb. 2011, doi: 10.1093/bioinformatics/btq662.
[11] S. Sharma, S. Sarkar, S. S. Paul, S. Roy, and K. Chattopadhyay, “A small molecule chemical chaperone optimizes its unfolded state contraction and denaturant like properties,” Sci. Rep., vol. 3, no. 1, p. 3525, 2013, doi: 10.1038/srep03525.
[12] D. Gentile, V. Patamia, A. Scala, M. T. Sciortino, A. Piperno, and A. Rescifina, “Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study,” Mar. Drugs, vol. 18, no. 4, 2020, doi: 10.3390/md18040225.
[13] M. Weni, M. Safithri, and D. S. H. Seno, “Molecular Docking of Active Compounds Piper crocatum on The Alpha- Glucosidase Enzyme as Antidiabetic Penambatan Molekuler Senyawa Aktif Daun Sirih Merah ( Piper Crocatum ) terhadap Enzim Αlfa-Glukosidase sebagai Antidiabetes,” IJPST, vol. 7, no. 2, 2020.
[14] M. Nawaz et al., “Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives,” BMC Chem., vol. 14, no. 1, p. 43, 2020, doi: 10.1186/s13065-020-00695-1.
[15] N. Ramasubbu, K. Sundar, C. Ragunath, and M. M. Rafi, “Structural studies of a Phe256Trp mutant of human salivary α-amylase: Implications for the role of a conserved water molecule in enzyme activity,” Arch. Biochem. Biophys., vol. 421, no. 1, pp. 115–124, 2004, doi: 10.1016/j.abb.2003.10.007.
[16] Y. Itoh et al., “N+-C-H···O Hydrogen bonds in protein-ligand complexes,” Sci. Rep., vol. 9, no. 1, p. 767, 2019, doi: 10.1038/s41598-018-36987-9.
[17] L. M. Salonen et al., “Molecular recognition at the active site of factor Xa: cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water.,” Chemistry, vol. 18, no. 1, pp. 213–222, Jan. 2012, doi: 10.1002/chem.201102571.
[18] P. Zhou, J. Huang, and F. Tian, “Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.,” Curr. Med. Chem., vol. 19, no. 2, pp. 226–238, 2012, doi: 10.2174/092986712803414150.