Evaluating registration staff understanding of electronic medical record use
##plugins.themes.academic_pro.article.main##
Abstract
This study aimed to evaluate the understanding of registration staff regarding the use of Electronic Medical Records (EMR) at Puskesmas Bringin, a primary healthcare center in Semarang Regency. Despite the growing emphasis on digital transformation in health services, the success of EMR implementation largely depends on how well frontline staff comprehend and engage with the system. Using a qualitative descriptive method, data were collected through in-depth interviews and direct observations with selected registration officers. The findings revealed varying levels of understanding among staff, influenced by differences in digital literacy, training exposure, and system accessibility. Some staff demonstrated strong conceptual and operational knowledge of EMR, while others relied on peer support or manual records due to uncertainty in system navigation. Technical barriers and limited organizational support further impacted their ability to fully utilize EMR functions. The study concluded that improving staff understanding requires targeted training, user-friendly system design, and continuous mentoring. These efforts are essential to ensure the successful integration of EMR in primary healthcare services and to support better health data management at the grassroots level.
##plugins.themes.academic_pro.article.details##
References
Ajami, S., & Bagheri-Tadi, T. (2013). Barriers for adopting electronic health records (EHRs) by physicians. Acta Informatica Medica, 21(2), 129–134
Alasmary, W., El Metwally, A., & Househ, M. (2014). The association between computer literacy and training on EMR with physician satisfaction in Saudi Arabia. Journal of Medical Systems, 38(8), 1–6.
Ariani, S. (2023). Analisis Keberhasilan Implementasi Rekam Medis Elektronik Dalam Meningkatkan Efisiensi Dan Mutu Pelayanan. Jurnal Kesehatan Dan Kedokteran, 2(2), 7–14.
Boonstra, A., & Broekhuis, M. (2010). Barriers to the acceptance of electronic medical records by physicians: From systematic review to taxonomy and interventions. BMC Health Services Research, 10(1), 231.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
Cranford, S. W. (2020). Seven seconds or less: Buzzwordy titles in the era of MOFs and Tinder. Matter, 3(4), 965–967.
Cronje, J. C. (2020). Designing questions for research design and design research in e-learning. Electronic Journal of E-Learning, 18(1), 13–24.
Firdaus, D. M. (2024). ANALISIS KINERJA APLIKASI ELECTRONIC HUMAN DEVELOPMENT WORKER (E-HDW) TERHADAP KINERJA KPM DI KABUPATEN KENDAL. Universitas Islam Sultan Agung Semarang.
Fryer, L. K., & Dinsmore, D. L. (2020). The promise and pitfalls of self-report: Development, research design and analysis issues, and multiple methods. Frontline Learning Research, 8(3), 1–9.
Grieshaber, S. (2020). Equity and research design. In J. Sumsion (Ed.), Doing early childhood research (pp. 177–191). Routledge.
Irawan, D., & Perindustrian, K. D. (2020). Industri Produk Tekstil (Apd) Jawa Timur Meningkat Di Tengah Pandemi Covid-19. Merdeka Berpikir: Catatan Harian Pandemi Covid, 19, 111.
hairat, S., Burke, G., Archambault, H., Schwartz, T., & Larson, J. (2018). Perceived barriers to electronic medical record adoption. Applied Clinical Informatics, 9(3), 575–582.
Kruse, C. S., Kothman, K., Anerobi, K., & Abanaka, L. (2016). Adoption factors of the electronic health record: A systematic review. JMIR Medical Informatics, 4(2), e19.
Lehmann, C. U., & Kuo, A. A. (2019). Electronic health records and pediatric practice. Pediatrics, 143(6), e20191854.
Ludwick, D. A., & Doucette, J. (2009). Primary care physicians’ experience with electronic medical records: Barriers to implementation in a fee-for-service environment. BMC Family Practice, 10(1), 44.
Iskandar, A. P. S., Setiawan, H., Judijanto, L., Mahendra, G. S., Ardi, M., Putri, N. A. R., … Wazaumi, D. D. (2024). Teknologi Big Data: Pengantar Dan Penerapan Teknologi Big Data Di Berbagai Bidang. PT. Green Pustaka Indonesia.
Listautin, L., Nengsi, N., & Irwandi, I. (2025). EVALUASI IMPLEMENTASI ELECTRONIC HEALTH RECORDS (EHR) RS Dr. BRATANATA JAMBI. ARUMAS, 2(1), 1–14.
Ratnaningsih, T., & Santoso, W. (2024). ANALISIS HUBUNGAN KINERJA PENDOKUMENTASIAN EMR DENGAN KEPUASAN PERAWAT DAN PASIEN DI RSUD DR. SOETOMO SURABAYA. Perpustakaan Universitas Bina Sehat PPNI.
Saragih, M., & Novimariono, N. (2020). An experimental study of the effectiveness PEOW model through applying quartet card in teaching English writing. Indonesian Journal of Education, Social Sciences and Research, 1(1), 32–40.
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2020). Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data, 8(3), 171–188.
Stewart, E. (2021). Detecting fake news: Two problems for content moderation. Philosophy & Technology, 34(1), 1–18.
Utoyo, I. (2020). Hybrid Company Model: Cara Menang di Era Digital yang Disruptif. PT. Rayyana Komunikasindo.
Vanchapo, A. R., MKes, M., Radian Ilmaskal, S. K. M., Rachmawati Novaria, M. M., Mikrajab, M. A., SKM, M. P. H., … Yulia, S. K. M. (2024). PERENCANAAN DAN EVALUASI KESEHATAN. Cendikia Mulia Mandiri.
van der Giesen, C., Cucurachi, S., Guinée, J., Kramer, G. J., & Tukker, A. (2020). A critical view on the current application of LCA for new technologies and recommendations for improved practice. Journal of Cleaner Production, 259, 120904.
World Health Organization. (2019). Digital health strategy 2020–2024. WHO Press.