Formulation and characterization of tretinoin nanosuspension and in silico testing as an anti-inflammatory

##plugins.themes.academic_pro.article.main##

M Ayodia Ramadhoni
Garnadi Jafar
Arin Nur Halizah
Fenti Fatmawati

Abstract

Introduction: Tretinoin is an effective retinoid derivative for acne therapy, but has formulation challenges due to its lipophilic nature and high crystallinity. An appropriate formulation strategy is needed to improve its stability and bioavailability. Objective: This study aims to evaluate the compatibility of tretinoin with excipients in nanosuspension formulations and their physicochemical characterization. Methods: Preliminary tests were carried out using Fourier Transform Infrared Spectroscopy (FTIR), crystallinity was analyzed by X-ray Diffraction (XRD), and thermal analysis by Differential Scanning Calorimetry (DSC). Nanosuspension characterization includes particle size, polydispersity index, zeta potential and entrapment efficiency. In silico test of the potential of tretinoin as a COX-2 inhibitor related to anti-inflammatory effects. Results: FTIR results showed no chemical interaction between tretinoin and excipients. XRD showed a decrease in tretinoin crystallinity after mixing with HPMC and PVP. DSC showed a shift in the melting point of tretinoin, indicating a physical interaction with excipients. Characterization of nanosuspension showed particle size <1000 nm, polydispersity index <0.5, zeta potential ±-20 mV, and entrapment efficiency >80%. In silico tests show that tretinoin has a binding energy of -9.57 kcal/mol against the Cyclooxygenase-2 (COX-2) enzyme with an inhibition constant of 96.03 nM. Conclusion: Tretinoin shows good compatibility and physicochemical characteristics in nanosuspension formulation, as well as potential as an anti-inflammatory agent through COX-2 inhibition.

##plugins.themes.academic_pro.article.details##

How to Cite
Ramadhoni, M. A., Jafar, G., Halizah, A. N. and Fatmawati, F. (2025) “Formulation and characterization of tretinoin nanosuspension and in silico testing as an anti-inflammatory”, Science Midwifery, 13(1), pp. 188-198. doi: 10.35335/midwifery.v13i1.1892.

References

Ahmad, V., Khan, M. I., Jamal, Q. M. S., Alzahrani, F. A., & Albiheyri, R. (2023). Computational Molecular Docking and Simulation-Based Assessment of Anti-Inflammatory Properties of Nyctanthes Arbor-Tristis Linn Phytochemicals. Pharmaceuticals, 17(1), 18.
Ahmadi Tehrani, A., Omranpoor, M. M., Vatanara, A., Seyedabadi, M., & Ramezani, V. (2019). Formation of nanosuspensions in bottom-up approach: theories and optimization. DARU Journal of Pharmaceutical Sciences, 27, 451–473.
Aini, N. N. (2021). Karakteristik Sediaan Nanoemulsi Dari Ekstrak Etanol Daun Pada Berbagai Tumbuhan: Tinjauan Literatur.
Athallah, M. M., Adjeng, A. N. T., Andrifianie, F., Sayoeti, M. F. W., Ciptaningrum, S. R. R., & Widodo, A. R. (2024). Nanoemulgel: Inovasi Terbaru dalam Penghantaran Obat secara Topikal dengan Teknologi Nano. Sains Medisina, 2(6), 207–213.
de Barros Lima, Í. P., Lima, N. G. P. B., Barros, D. M. C., Oliveira, T. S., Barbosa, E. G., Gomes, A. P. B., … Aragão, C. F. S. (2015). Compatibility study of tretinoin with several pharmaceutical excipients by thermal and non-thermal techniques. Journal of Thermal Analysis and Calorimetry, 120, 733–747.
Elfita, L., Apriadi, A., & Dianmurdedi, S. (2022). Studi penambatan molekuler dan simulasi dinamika molekuler senyawa turunan furanokumarin terhadap Reseptor Estrogen alfa (ER-α) sebagai anti kanker payudara.
Fadilah, S. N., & Herdiana, Y. (2023). Review Artikel: Nanoformulasi Untuk Pengobatan Penyakit Gerd. Farmaka, 21(3), 389–398.
Hairulazam, A., Malaysia, U., Sultan, J., Shah, A., Samian, I. A., Azzar, A., … Alias, N. (2021). In Silico Docking of Epicatechin, Corilagin and Quercetin as Potential Pancreatic Lipase Inhibitor for Obesity Treatment. International Journal of Allied Health Sciences, 5(2), 2194–2200.
Jacob, S., Nair, A. B., & Shah, J. (2020). Emerging role of nanosuspensions in drug delivery systems. Biomaterials Research, 24(1), 3.
Jafar, G., Putriyanti, A., Muhsinin, S., & Kencana, B. (2025). Formulation and Characterization of Tretinoin Nanostructured Lipid Carriers Using Apifil and Cremophore, 5(3), 477–484.
Jafar, G., Salsabilla, S., & Santoso, R. (2022). Original Article DEVELOPMENT AND CHARACTERIZATION OF COMPRITOL ATO ® BASE IN NANOSTRUCTURED LIPID CARRIERS FORMULATION WITH THE PROBE SONICATION METHOD, 14(4), 64–66.
Jafar, G., Sucipto, Y. K., & Supriadi, D. (2024). Development of the Formula and Characterization of Tretinoin Nanostructured Lipid Carriers ( NLC ) With Precirol ® Ato5 Using the Sonicator Probe Method, 10(6), 62–67.
Kim, H. J., & Kim, Y. H. (2024). Exploring acne treatments: From pathophysiological mechanisms to emerging therapies. International Journal of Molecular Sciences, 25(10), 5302.
Martien, R., Adhyatmika, A., Irianto, I. D. K., Farida, V., & Sari, D. P. (2012). Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat. Majalah Farmaseutik, 8(1), 133–144.
Muhlis, M. (2020). EFEKTIFITAS SERUM AUTOLOGUS TOPIKAL DAN KRIM TRETINOIN 0.05% TOPIKAL DENGAN ANALISIS INTERLEUKIN-17 A DAN VITAMIN A TERHADAP PERUBAHAN MANIFESTASI KLINIS PENDERITA ACNE VULGARIS.
Pratama, F. A. (2024). Effectiveness of Bay Leaf Extract (Syzygium polyanthum) on Uric Acid and Cholesterol Levels in Caffeine-Induced Male Mice (Mus musculus) Fahrul Andika Pratama1, Salma Aisyafalah1, Rochmah Kurnijasanti2. Journal of Basic Medical Veterinary, 13(2), 68–80.
Rasyid, H., Mardiyanti, R., Arief, I., & Saputri, W. (2023). eISSN: 2503-0310. MOLEKUL.
Shah, B., Khunt, D., Bhatt, H., Misra, M., & Padh, H. (2015). Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. European Journal of Pharmaceutical Sciences, 78, 54–66.
Shivanika, C., Kumar, D., Ragunathan, V., Tiwari, P., & Sumitha, A. (2020). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 1.
Suryani, Y., Darniwa, A. V., Musa’adah, M., & Akbar, R. T. M. (2024). Inovasi produk berbasis kacang koro benguk. Bimedia Pustaka Utama.
Syarafina, Z. Y. I., Safithri, M., Bintang, M., & Kurniasih, R. (2022). In Silico Screening of Cinnamon (Cinnamomum burmannii) Bioactive Compounds as Acetylcholinesterase Inhibitors. Jurnal Kimia Sains Dan Aplikasi, 25(3), 97–107. https://doi.org/10.14710/jksa.25.3.97-107
Torres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 4574.
Tsamarah, D. F., Izzaturrahmi, A. S., & Sopyan, I. (2023). Sistem Penghantaran Obat Limfatik: Peningkatan Bioavailabilitas Obat dengan Nanopartikel. Majalah Farmasetika, 8(5), 475–502.
Vasam, M., Korutla, S., & Bohara, R. A. (2023). Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochemistry and Biophysics Reports, 36, 101578.
Wiyono, A. S., & Diyah, N. W. (2023). Molecular docking of 5-o-benzoylpinostrobin derivatives from Boesenbergia pandurata roxb. as anti-inflammatory. Journal of Public Health in Africa, 14(Suppl 1), 2532.
Yoham, A. L., & Casadesus, D. (2023). Tretinoin. In StatPearls [Internet]. StatPearls Publishing.
Zasada, M., & Budzisz, E. (2019). Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 36(4), 392–397.
Zheng, F., Zhu, Z., Lu, J., Yan, Y., Jiang, H., & Sun, Q. (2023). Predicting the HOMO-LUMO gap of benzenoid polycyclic hydrocarbons via interpretable machine learning. Chemical Physics Letters, 814, 140358. https://doi.org/https://doi.org/10.1016/j.cplett.2023.140358
Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52. https://doi.org/10.1016/j.ejps.2010.05.013